近日,Gartner发布了数据与分析领域的十大技术趋势,为数据和分析领导者的新冠疫情(COVID-19)响应和恢复工作提供指导,并为疫情后的重启做好准备。 数据和分析领导者如果希望在疫情后能持续创新,就需要不断提高数据处理和访问的速度,扩大分析规模,在前所未有的市场动荡中赢得成功。 数据和分析领导者应检验以尝试以下十大数据和分析趋势,加快新冠疫情后的恢复: 趋势1:更智能、更高速、更负责的AI 到2024年底,75%的企业机构将从人工智能(AI)试点转为AI运营,基于流数据的分析基础架构的数量将因此增加5倍。 疫情当前,机器学习(ML)、优化和自然语言处理(NLP)等AI技术正就病毒传播、应对效果及影响提供重要洞察和预测。 而强化学习和分布式学习等其他更智能的AI技术正在创建更具适应性和灵活性的系统,用于处理复杂的业务情况。例如,基于代理的系统可对复杂系统进行建模和仿真。 趋势2:仪表板的衰落 具备更多自动化和消费化体验的动态数据故事将取代视觉化、点击式的数据创建和探索。因此,用户使用预定义仪表板的时间也将会减少。向支持增强分析或NLP等技术的动态数据故事转变,这意味着:最相关的洞察将基于用户的场景、角色或用途,流式传输给每个用户。
|